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Introduction
In his seminal work [5], Serre defines a general notion of invariants of a certain
class of objects over a base field: if K is a field, and A and H are two functors
defined on the category of field extensions of K to the category of sets, then
the set Inv(A,H) of invariants of A with values in H is defined as the set of
natural transformations from A to H. Often, H is actually a functor to the
category of rings, and Inv(A,H) is then naturally an H(K)-algebra. The idea
is very simple and broad: for each extention L/K, to each element of A(L) we
associate an element of H(L), with the only constraint that this is compatible
with field extensions.

Some primary sources of examples are given by A(L) = H1(L,G(L)) (non-
abelian cohomology) where G is an algebraic group over K, and H(L) =
H∗(L,Z/2Z) (mod 2 Galois cohomology) or H(L) = W (L) (the Witt group
of quadratic forms). This is the study of so-called (mod 2) cohomological in-
variants and Witt invariants of algebraic groups, which is a very active field of
study. When G is the orthogonal group of some non-degenerate quadratic form
of rank n, the corresponding A(L) can be identified with the set Quadn(L)
of isometry classes of non-degenerate quadratic forms of rank n, thus we are
looking at invariants of quadratic forms of fixed dimension.

In this special case, Serre gives a complete description of the invariants: the
cohomological invariants of Quadn are a free H∗(K,Z/2Z)-module with basis
the Stiefel-Whitney invariants w0, . . . , wn [5, 17.3], and the Witt invariants are
a free W (K)-module over the so-called λ-powers λ0, . . . , λn [5, 27.16]. Those
operations, introduced by Bourbaki in [2], can be described either explicitly
given a diagonalization:

λd(〈a1, . . . , an〉) =
∑
I

〈aI〉

where I runs over the subsets of {1, . . . , n} of cardinal d and aI =
∏
i∈I ai; or

it can be described more intrinsically given a bilinear space (V, b):

λd(b) : Λd(V )× Λd(V ) −→ K
(u1 ∧ · · · ∧ ud, v1 ∧ · · · ∧ vd) 7−→ det (b(ui, vj)) .

Those operations, though very natural, make suprisingly few appearances
in the quadratic form literature; for instance, they do not even get a passing
mention in references such as [11], [3], [13] or [16]. This might be in part due to
the fact that they are not well-defined on the Witt ring, which is traditionally
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the preferred algebraic structure for working with quadratic forms, but rather
on the Grothendieck-Witt ring GW (K). The appearance of the Grothendieck-
Witt ring in this context should not come as a surprise: the theory of λ-rings
was initiated by Grothendieck to be applied to K-theory, where it had most of its
success, and GW (K) is nothing but the 0th hermitian K-theory ring of K. As
an illustration of the relative indifference given to the λ-operations on quadratic
forms, the fact that GW (K) forms a λ-ring has only been proved somewhat
recently [12], although the corresponding (and technically more difficult) fact
for the K0 ring of a variaty was shown in the realy days of K-theory.

It seems that, in the quest for cohomological invariants, the proof of the
Milnor conjecture by Voevodsky has spurred some resurgence of interest in those
operations through the following strategy: since we now have access to canonical
morphisms en : In(K) → Hn(K,Z/2Z) (where In(K) is the nth power of
the fundamental ideal I(K) of the Witt ring), we can define cohomological
invariants by constructing invariants with values in In. We will say that a
mod 2 cohomological invariant is liftable if it is obtainable this way. As a basic
example, it is not difficult to show, using λ-operations, that the Stiefel-Whitney
invariants are liftable. In [7], we strongly rely on λ-operations to describe all
cohomological invariants of In, which turn out to be all liftable. This was
inspired by previous constructions by Rost [15] (improved by Garibaldi in [4]),
already using λ-operations to define some liftable invariants of spin groups.

When the algebraic group G is a classical group, we are led to consider invari-
ants of central simple algebras with involution. To implement our strategy, we
need to be able to associate quadratic forms to those objects. The most common
such construction is given by trace forms: if (A, σ) is an algebra with involution
of the first kind, we can define the trace form TA : x 7→ TrdA(x2), the invo-
lution trace form Tσ : x 7→ TrdA(xσ(x)), its restriction T+

σ to the subspace of
σ-symmetric elements, and its restriction T−σ to the subspace of anti-symmetric
elements. These forms are related by TA = T+

σ −T−σ and Tσ = T+
σ +T−σ , so it is

enough to know T+
σ and T−σ . They have indeed been used to define or compute

some cohomological invariants, for instance in [1] or [14].

If (A, σ) is a central simple algebra with involution of the first kind over K,
and h is an ε-hermitian form over (A, σ) (with ε = ±1), we define in this article
the λ-power λd(h) for any d ∈ N, which is a quadratic form over K if d is even,
and an ε-hermitian form over (A, σ) if d is odd. In fact, we defined in [7] a
graded commutative ring

G̃W (A, σ) = GW (K)⊕GW−1(K)⊕GW (A, σ)⊕GW−1(A, σ),

and we define here a graded pre-λ-ring structure on this ring.
This gives a whole new means of associating a quadratic form to an ε-

hermtian form, using h 7→
∑
d adλ

2d(h) for some ad ∈ W (K), and also to an
algebra with involution (A, σ), applying this method to the canonical diagonal
form h = 〈1〉σ. We recover as a special case the trace forms mentioned above,
using λ2(〈1〉σ) (see Corollary (3.30)).

The grading on the ring G̃W (A, σ) that we are interested in is a crucial part
of the theory, and we are therefore led to develop a theory of graded pre-λ-rings.
Actually, G̃W (A, σ) is defined as a quotient of a graded ring ĜW (A, σ), which
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is graded not over a group as is more commonplace, but over a monoid. In
addition, it is itself the Grothendieck ring of a graded semiring ŜW (A, σ). It
is thus on ŜW (A, σ) that our constructions are initially carried out, in order to
be carried over to G̃W (A, σ) (in two steps). This means that we should in fact
develop a theory of graded pre-λ-semirings, which are graded over a monoid.
The first section of the article is dedicated to the layout of this theory; as we
do not expect that the reader is familiar in any way with λ-rings, and as rings
graded over a monoid are a somewhat esoteric subject, this section is meant to
be rather didactic.

In Section 2, we briefly recall (without proofs) the necessary constructions
and results regarding G̃W (A, σ) from [7]. Then Section 3 is the heart of the ar-
ticle, where the structure of graded pre-λ-ring is established on G̃W (A, σ). The
remaining Section 4 is devoted to the determinant, and the duality it induces
on λ-powers.

Preliminaries and conventions
We fix throughout the article a base field K of characteristic not 2. An arbitrary
field extension ofK will usually be denoted by L, and ifX is any object (algebra,
module, quadratic form, etc.) defined over K, then XL = X ⊗K L is the
corresponding object over L, obtained by base change. All algebras and modules
are assumed to be finite-dimensional over K.

Commutative monoids

Let M be a commutative monoid. We write M× for the subgroup of invertible
elements (even when M is denoted additively). We say that a submonoid N ⊂
M is saturated if whenever x+y = z with x, z ∈ N then y ∈ N ; ifM is actually
a group, this exactly means that N is a subgroup.

We write G(M) for the Grothendieck group of M , which we recall is gener-
ated by formal differences of elements ofM ; there is always a monoid morphism
M → G(M) but it is only injective if M satisfies the cancellation property.

Bilinear forms

We systematically identify symmetric bilinear forms and quadratic forms over
K, through b 7→ qb with qb(x) = b(x, x). Diagonal quadratic forms are de-
noted 〈a1, . . . , an〉, with ai ∈ K∗, and the n-fold Pfister form 〈〈a1, . . . , an〉〉
is 〈1,−a1〉 · · · 〈1,−an〉. Every bilinear form is implicitly assumed to be non-
degenerate.

For ε = ±1, we use SW ε(K) (as in "semi Witt") to designate the monoid of
isometry classes of (nondegenerate) ε-symmetric bilinear forms overK; we do in-
clude the zero-dimensional form. Then the Grothendieck-Witt group GW ε(K)
is the Grothendieck group of SW ε(K), and the Witt group W ε(K) is the quo-
tient of GW ε(K) by the hyperbolic forms. We often omit the superscript ε when
ε = 1. Recall that SW (K) is a commutative semiring (for the orthogonal sum
and tensor product operations), and GW (K) andW (K) are commutative rings,
as well as GW±(K) = GW (K)⊕GW−1(K) and W±(K) = W (K)⊕W−1(K).
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Central simple algebras

If A is a central simple algebra over K, we write TrdA : A→ K for the reduced
trace of A, and NrdA : A → K for its reduced norm (recall that they can be
defined as descents of the usual trace and determinant maps on endormorphism
algebras of vector spaces). The trace form of A is the symmetric bilinear form
TA : A×A→ K defined by TA(x, y) = TrdA(xy).

If V is a right A-module, its reduced dimension rdim(V ) is characterized
by deg(A) rdim(A) = dimK(A); if V is non-zero, it is the degree of the central
simple algebra EndA(V ).

We denote by FA (resp. FA,2) the generic splitting field of A (resp. the field
of generic reduction to index 2), defined as the function field of the Severi-Brauer
variety SB(A) of A (resp. the generalized Severi-Brauer variety SB2(A), see
[10, 1.C]).

Algebras with involution

When we say that (A, σ) is an algebra with involution over K, we mean that
A is a central simple algebra over K, and that σ is an involution of the first
kind on A, so σ is an anti-automorphism of K-algebra of A, with σ2 = IdA. In
general, “involution” will be synonym with “involution of the first kind”.

For ε = ±1, we define the set Symε(A, σ) ⊂ A of ε-symmetric elements of
(A, σ), meaning that they satisfy σ(a) = εa, and Symε(A×, σ) is the subset of
invertible ε-symmetric elements. If A has degree n, the involution σ is orthog-
onal when Sym(A, σ) has dimension n(n + 1)/2, and it is symplectic when it
has dimension n(n − 1)/2. In particular, (K, Id) is an algebra with orthogonal
involution. A quaternion algebra admits a unique symplectic involution, called
its canonical involution, and we denote it by γ. We define the sign ε(σ) of an
involution σ as 1 if σ is orthogonal, and −1 if it is symplectic.

The involution trace form of (A, σ) is the bilinear form Tσ : A × A → K
defined by Tσ(x, y) = TrdA(σ(x)y). The subspaces Symε(A, σ) ⊂ A for ε = ±1
are orthogonal for Tσ, and we write T εσ for its restriction to Symε(A, σ) ⊂ A.

Hermitian forms

If (A, σ) is an algebra with involution, and ε = ±1, an ε-hermitian module
(V, h) over (A, σ) is a right A-module V , together with an ε-hermitian form
h : V × V → A (always assumed to be non-degenerate). We often just speak
about an ε-hermitian form without mentioning the underlying module. If we
want to talk about an ε-hermitian form without mentioning ε explicitly, we will
use the expression "general hermitian form".

If V is non-zero, h induces the so-called adjoint involution σh on the central
simple algebra EndA(V ), characterized by h(u(x), y) = h(x, σh(u)(y)). We call
ε(h) = ε the sign of h, and t(h) = ε(σh) the type of h; notice that t(h) =
ε(σ)ε(h).

If a ∈ Symε(A×, σ), the elementary diagonal ε-hermitian form 〈a〉σ : A×A→
A is defined by (x, y) 7→ σ(x)ay. A diagonal form 〈a1, . . . , an〉σ is then the
(orthgonal) sum of the 〈ai〉σ.

We define the monoid SW ε(A, σ) of isometry classes of ε-hermitian forms
over (A, σ) (the zero module is included), and SWε(A, σ) is the monoid of forms
of type ε. Note that SWε(A, σ) is equal to SW εε(σ)(A, σ). We then define the
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groups GW ε(A, σ), GWε(A, σ), W ε(A, σ) and Wε(A, σ) as we did for bilinear
forms (which are the special case where (A, σ) = (K, Id)).

Let us record the two following facts, which are direct consequences of the
main results in [8]:

Lemma 0.1. Let (A, σ) be an algebra with involution. Then the scalar extension
map W1(A, σ)→W1(AFA

, σFA
) is injective.

Lemma 0.2. Let (A, σ) be an algebra with involution. Then the scalar extension
map W−1(A, σ)→W−1(AFA,2

, σFA,2
) is injective.

Symmetric functions

We define the ring of symmetric functions UZ ⊂ Z[[x1, x2, . . . ]] as the subring
consisting of the formal series that are invariant under all permutations of the
xi and that are bounded in total degree. For any f ∈ UZ and any n ∈ N∗,
the polynomial f(x1, . . . , xn, 0, 0, . . . ) is symmetric in n variables, so for any
elements a1, . . . , an in a commutative ring, we can define f(a1, . . . , an) which is
symmetric in the an. For any d ∈ N, there is the elementary symmetric function
σd ∈ UZ defined as σd =

∑
i1<···<id xi1 · · ·xid , and the fundamental theorem of

symmetric functions states that UZ ' Z[σ1, σ2, . . . ].

1 Graded pre-λ-semirings
The goal of this article is to define and study an appropriate structure of graded
pre-λ-ring on the mixed Grothendieck-Witt ring G̃W (A, σ). But ultimately this
comes from a similar structure on ŜW (A, σ), which is only a semiring, graded
over a monoid. Therefore this is the framework that we develop in this section.

We do not assume that the reader is familier with λ-rings or with rings
graded over monoids, and we try to give a self-contained account of what is
needed for the article. We take [17] as our main reference for the classical
theory of (ungraded) λ-rings (though we also sometimes refer to [18]). We make
all the necessary adjustments to take the gradings into account (working with
semirings instead of rings poses no problem whatsoever), and refer directly to
the proofs in [17] when they are completely straightforward to adapt to our
context.

1.1 Motivation for λ-rings
The motivation for the notion of a λ-ring is to study the formal properties
of exterior powers of (projective) modules or vector bundles (in their various
flavours). A common aspect of those objects is that they satisfy a "splitting
principle": they can be "split" into sums of elementary "line elements" (for a
finitely generated projective module, this corresponds to their characterization
as being locally free, for instance in the étale topology). Thus one can regard
an element x as being "secretly" a sum x = l1 + · · · + ln of "1-dimensional"
elements, and we can ask how much of the li we can recover from x.

Clearly, only symmetric expressions in the li can be extracted. So for any
symmetric function f ∈ UZ, we would like to have some operation f̂ such that
f̂(x) = f(l1, . . . , ln). Of course, from the fundamental theorem of symmetric
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functions it is enough to consider the case f = σd; the corresponding operation
is what will be denoted λd.

Thus a λ-ring is a commutative ring endowed with some operations λd :
R → R which must satisfy certain formal properties that guarantee that they
behave as the elementary symmetric functions. In this section we only consider
pre-λ-rings, which satisfy a subset of those properties, and we discuss the full
notion of λ-ring in section ??. Note that for some authors, they are respectively
called "λ-rings" and "special λ-rings"; we follow what seems to be the current
terminology.

1.2 Graded semirings
If M is a commutative monoid (which we usually denote additively), an M -
graded commutative monoid A is a commutative monoid endowed with a de-
composition A =

⊕
g∈M Ag. Any ungraded commutative monoid can be seen

as a trivially graded monoid, meaning it is (uniquely) graded over the trivial
monoid. The elements of each Ag are called homogeneous, and the set of ho-
mogeneous elements is denoted |A|. The degree map ∂ : |A| →M ∪ {∞} sends
a ∈ Ag \ {0} to its degree g ∈ M , and ∂(0) = ∞ (where ∞ is a formal ele-
ment). A subset of A is said to be homogeneous if it contains the homogeneous
components (ie the component in each Ag) of all its elements.

If A and B are M -graded, then a graded morphism f : A → B is a group
morphism such that f(Ag) ⊂ Bg for all g ∈ M . Given a monoid morphism
ϕ : M → N , there is an induced N -grading ϕ∗(A) on A, where for each h ∈ N ,
Ah =

⊕
ϕ(g)=hAg (for instance, if ϕ : M → {0} is the trivial morphism, then

ϕ∗(A) is just A seen as a trivially graded ring). If A is M -graded and B is
N -graded, a lax graded morphism A→ B is the data of some ϕ : M → N , and
a graded morphism f : ϕ∗(A)→ B; we also say that f is a ϕ-graded morphism.

Recall that a semiring is the same as a ring except that its underlying additive
structure is only that of a commutative monoid, not necessarily a group. AnM -
graded semiring is a semiring R which is M -graded as an additive monoid, such
that 1 ∈ R0 (the neutral component), and Rg ·Rh ⊂ Rg+h for any g, h ∈M . All
graded semirings in this article will be commutative. A (lax) graded semiring
morphism is a (lax) graded morphism which is also a semiring morphism. Note
that any ungraded semiring is naturally a graded semiring for the trivial grading.

The subset |R| ⊂ R is actually a multiplicative submonoid, and ∂ : |R| →
M ∪ {∞} is a monoid morphism (where m +∞ = ∞ for all m ∈ M). An
element x ∈ |R| is called graded-invertible if for any g ∈ M , multiplication by
x induces an additive isomorphism from Rg to Rg+∂(x). The set of graded-
invertible elements is denoted by R× (which agrees with the usual notation if R
is ungraded), and it is a saturated submonoid of |R|. A homogeneous element
x ∈ |R| is invertible if and only if it is graded-invertible and ∂(x) is invertible
in M ; in particular, if M is a group, then R× = |R|× (the group of invertible
elements of the monoid |R|). On the other hand, in general an invertible element
or R does not have to be graded-invertible if it is not homogeneous.

If R is an M -graded commutative semiring, then the monoid semiring R[N ]
is a commutative (M × N)-graded semiring. In particular, if R is ungraded,
R[M ] is M -graded. Note that |R[N ]| ' |R| ×N as monoids, and R× ×N× is a
submonoid of (R[N ])×.
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An augmentation on a commutative M -graded semiring R is a graded mor-
phism δ̃R : R → Z[M ], and a morphism of augmented graded semirings is a
graded morphism which preserves the augmentation. We also define the total
augmentation δR : R → Z, which is an ungraded semiring morphism, as the
composition of δ̃R and the canonical ring morphism Z[M ]→ Z.

1.3 Pre-λ-semirings
Definition 1.1. LetM be a commutative monoid. AnM -graded pre-λ-semiring
is an M -graded commutative semiring R endowed with functions λd : R → R
for all d ∈ N such that:

• for all g ∈M and d ∈ N, λd(Rg) ⊂ Rdg;

• for all x ∈ R, λ0(x) = 1 and λ1(x) = x;

• for all g ∈M , x, y ∈ Rg and d ∈ N, λd(x+ y) =
∑
p+q=d λ

p(x)λq(y).

Note that by definition it is enough to define the λd on each homogeneous
component; therebis then a unique extension to the whole semiring satisfying
the axioms.

Example 1.2. If (V, b) is an ε-symmetric bilinear space over K, then there is
a natural εd-symmetric bilinear map λd(b) on Λd(V ), given by

λd(b)(u1 ∧ · · · ∧ ud, v1 ∧ · · · ∧ vd) = det(b(ui, vj)).

This defines a µ2(K)-graded pre-λ-semiring structure on SW±(K).

Of course, a morphism of graded pre-λ-semirings, which we call a graded λ-
morphism, is a graded semiring morphism which commutes with the operations
λd. This defines a category of M -graded pre-λ-semirings.

For any symmetric function f ∈ UZ, we define an operation f̂ : R → R: if
f = P (σ1, . . . , σd) for some (uniquely defined) P ∈ Z[x1, . . . , xd], then f̂(x) =

P (λ1(x), . . . , λd(x)). Then by definition σ̂d = λd, and any f̂ commutes with any
λ-morphism. Also note that if f is homogeneous of degree n, then f̂(Rg) ⊂ Rng
for all g ∈M .

Definition 1.3. Let R be an M -graded pre-λ-semiring, and let x ∈ R. We
define the λ-dimension dimλ(x) of x as the supremum in N ∪ {∞} of all n ∈ N
such that λn(x) 6= 0. The subset of elements with finite λ-dimension is denoted
Rf.d..

We usually just say "dimension" for the λ-dimension when there is no risk
of confusion. Note that only 0 ∈ R has dimension 0, that dimλ(x + y) 6
dimλ(x)+dimλ(y), and that if f is a graded λ-morphism, dimλ(f(x)) 6 dimλ(x).

Then if x = l1 + · · · + ln where the li have dimension 1, and if we assume
that any product of the li still has dimension (at most) 1, we can easily show
that for any f ∈ UZ, f̂(x) = f(l1, . . . , ln) ∈ R. We will see that for the cases we
consider all products of elements of dimension 1 have dimension 1, so we can
indeed extract all symmetric functions of the li from x, as we discussed ealier
(of course such a sum decomposition does not exist in general).
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It can be useful to rephrase the definition of a graded pre-λ-semiring in a
more abstract way. For any commutative M -graded semiring R, consider the
commutative multiplicative monoid

Λ(R) = 1 + tR[[t]] ⊂ R[[t]] (1)

where R[[t]] is of course the semiring of formal series over R, and define for any
g ∈M the submonoid

Λ(R)g =
{∑

adt
d ∈ Λ(R) | ∀n ∈ N, ad ∈ Rdg

}
. (2)

Then we get an M -graded monoid

ΛM (R) =
⊕
g∈M

Λ(R)g. (3)

There is a natural graded monoid morphism ηR : ΛM (R) → R (where R
is seen as an additive monoid) which sends a series

∑
adt

d to a1. Defining
functions λd : Rg → Rdg for all g ∈ M and d ∈ N∗ is the same as defining a
single homogeneous function λt : R→ ΛM (R), using λt(x) = 1 +

∑
d>0 λ

d(x)td,
and from the definition of the monoid structure on Λ(R) one can easily check
that the λd define a graded pre-λ-semiring structure if and only if λt is an
additive morphism which is a section of ηR.

If f : S → R is any M -graded semiring morphism, then it induces a com-
mutative diagram

ΛM (S) S

ΛM (R) R

ηS

f∗ f

ηR

and when R and S are graded pre-λ-semirings, then f is a λ-morphism if and
only if the following natural diagram commutes:

S ΛM (S)

R ΛM (R).

λt

f f∗

λt

An element x ∈ R is finite-dimensional exactly when λt(x) ∈ R[[t]] is a
polynomial, and its dimension is then the degree of this polynomial.

Remark 1.4. If ϕ : M → N is a monoid morphism, there is a canonical
morphism ΛM (R)→ ΛN (ϕ∗(R)), which is compatible with the construction of
ηR. This means that a structure of M -graded pre-λ-semiring on R canonically
induces a structure of N -graded pre-λ-semiring on ϕ∗(R). In particular, taking
ϕ to be the trivial morphism ϕ : M → {0}, it induces a structure of (ungraded)
pre-λ-semiring on R (as Λ{0}(ϕ∗(R)) is just Λ(R)).

1.4 Augmentation
The following proposition is immediate from the pre-λ-semiring axioms:
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Proposition 1.5. If R is an M -graded pre-λ-semiring and N is a commutative
monoid, then R[N ] has a canonical (M × N)-graded pre-λ-semiring structure
given by λd(x · h) = λd(x) · (dh) for all d ∈ N, x ∈ R and h ∈ N .

Moreover, the canonical semiring morphism R[H]→ R is a λ-morphism.

Example 1.6. There is a canonical pre-λ-ring structure on Z, given by λd(n) =(
n
d

)
, which then induces a canonical M -graded pre-λ-ring structure on the

monoid ring Z[M ].

Definition 1.7. An augmentation of an M -graded pre-λ-semiring R is an aug-
mentation δ̃R : R→ Z[M ] which is a λ-morphism. The total augmentation map
δR : R→ Z is then an ungraded λ-morphism.

Example 1.8. The graded dimension map SW±(K)→ Z[µ2], which sends the
isometry class of (V, b) in SW ε(K) to dim(V ) · ε, is an augmentation on the
graded pre-λ-semiring SW±(K).

In general, we want to give the augmentation map the interpretation of a
"graded dimension", but it should not be confused with the λ-dimension. Since
for a strictly negative n,

(
n
d

)
6= 0 for all d ∈ N, an element x ∈ Rf.d. must satisfy

δR(x) > 0. Also, since the λ-dimension of n ∈ N is just n, and a λ-morphism
lowers the λ-dimension, we see that we must have 0 6 δR(x) 6 dimλ(x).

1.5 Positive structure
In practice, a lot of (pre)-λ-rings, such as the K0 ring of a commutative ring or
a topological space, are defined as Grothendieck rings of semirings (of modules
or vector bundles in those examples), which means that general elements are
formal differences of "concrete" elements which enjoy a better behaviour.

Proposition 1.9. Let S be an (augmented) M -graded pre-λ-semiring. There
is a unique structure of (augmented) M -graded pre-λ-ring on the Grothendieck
ring G(S) such that the canonical morphism S → G(S) preserves the structure.

Furthermore, if S 7→ R is a morphism of (augmented) M -graded pre-λ-
semirings where R is actually a ring, then the induced ring morphism G(S)→ R
is a morphism of (augmented) M -graded pre-λ-rings.

Proof. The fact that G(S) has a unique compatible ring structure is classical
(and easy), and clearly G(S)g = G(Sg) for all g ∈ M is the unique compatible
grading. Interpreting the λ-structure as a monoid morphism λt : S → ΛM (S),
and observing that ΛM (G(S)) is actually a group since G(S) is a ring, the
universal property of Grothendieck groups tells us that there is a unique λt :
G(S)→ ΛM (G(S)) such that the natural diagram

S ΛM (S)

G(S) ΛM (G(S))

λt

λt

commutes.
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If R is an M -graded pre-λ-ring and S → R is a λ-morphism, then we need
to check whether the diagram of abelian groups

G(S) ΛM (G(S))

R ΛM (R)

λt

λt

commutes. But since both compositions G(S) → ΛM (R) extend S → ΛM (R),
this is true bu unicersal property.

The case where S is augmented is proved similarly, as the augmentation is
just the data of a λ-morphism S → Z[M ].

Remark 1.10. If R is an augmented M -graded pre-λ-ring and S ⊂ R is a
substructure which is only a semiring and generates R additively, then R ' G(S)
canonically as an augmented M -graded pre-λ-ring.

Example 1.11. We have GW±(K) ' G(SW±(K)) as augmented µ2(K)-
graded pre-λ-rings.

Lemma 1.12. Let S be an M -graded semiring. Then the canonical map f :
S → G(S) satisfies f(S×) ⊂ R×.

Proof. If a ∈ S×, then multiplication by a induces isomorphisms Sg → Sg+∂(a)

for all g ∈ M , and therefore multiplication by f(a) induces isomorphisms
G(Sg)→ G(Sg+∂(a)).

As we mentioned, in that situation we would like the sub-semiring S ⊂ R to
enjoy good properties, that will somewhat extend to R. We adapt the treatment
in [18] to formalize those properties:

Definition 1.13. Let S be an augmented M -graded pre-λ-semiring. We say
that S is rigid if

1. for any x ∈ |S|, δS(x) = dimλ(x);

2. if `(S) is the set of 1-dimensional homogeneous elements, called line ele-
ments, then `(S) ⊂ S×.

Example 1.14. Our usual example SW±(K) is rigid. The line elements are
the 1-dimensional quadratic forms in SW (K).

Definition 1.15. Let R be an augmented M -graded pre-λ-semiring. We say
that R is an M -structured semiring if it is either a rigid semiring, or is a ring
and has a distinguished rigid sub-semiring S ⊂ R (which is part of the data)
which generates R additively. In that last case S is called a positive structure
on R.

In both cases the given rigid sub-semiring is denoted R>0, its elements are
called positive, and we also set R>0 = R>0 \{0}. We also write `(R) = `(R>0).

Note that there is an obvious category ofM -structured rings, which preserve
the positive structure.
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Remark 1.16. The two cases in the definition of M -structured semirings are
very different: indeed, in a rigid semiring, the only element which has an additive
inverse is 0.

Example 1.17. If R is an M -structured semiring, then R[N ] is an (M ×N)-
structured semiring, with (R[N ])>0 = (R>0)[N ] and `(R[N ]) = `(R)×N .

As N ⊂ Z is a positive structure for Z, N[M ] is a positive structure for Z[M ]
with `(Z[M ]) = M .

Lemma 1.18. Let R be an M -structured semiring. Then `(R) is a saturated
submonoid of R×, and therefore a saturated submonoid of the multiplicative
monoid |R|.
Proof. If R is rigid, then `(R) ⊂ R× by definition, and if R is a ring then it
follows from Lemma 1.12. Since R× is saturated in |R|, then it is enough to
show that `(R) is saturated in R×.

Let x, y, z ∈ R× such that xy = z and x, z ∈ `(R). If R is rigid, then the
equality δR(x)δR(y) = δ(z) gives 1×δR(y) = 1 so dimλ(y) = 1 and by definition
y is a line element.

In particular, when R is a ring we only need to prove that y is positive. Since
x is graded-invertible in R>0 and ∂(z) = ∂(x)+∂(y), we may write z = x·y′ with
y′ positive of degree ∂(y), and since x is graded-invertible in R, then y = y′.

Note that positive elements have finite dimension since they are sums of
homogeneous positive elements. The positive structure ensures that R enjoys a
well-behaved theory of dimension:

Proposition 1.19. Let R be an M -structured semiring. Then for any element
x ∈ Rf.d., we have dimλ(x) = δR(x), and the leading coefficient of λt(x) is a
line element. In particular, all elements of λ-dimension 1 are line elements,
and dimλ is an additive function on Rf.d..

Proof. Let A ⊂ R be the subset of elements x such that λt(x) is a polynomial
of degree δR(x) whose leading coefficient is a line element. By definition A ⊂
Rf.d, and we want to show that they are actually equal, which takes care of all
statements in the proposition.

First, we see that |R>0| ⊂ A. Indeed, if x is a positive homogeneous element,
then dimλ(x) = δR(x) by hypothesis, and if this dimension is n, then λn(x) is
a line element because it is positive and has dimension

(
n
n

)
= 1.

Then, we see that A is stable by sum: if x, y ∈ A, then λt(x+y) = λt(x)λt(y),
so if atn and btm are the leading terms of λt(x) and λt(y) respectively, the leading
term of λt(x+ y) is abtn+m because ab ∈ `(R) is non-zero. Note that n+m is
δR(x) + δR(y) = δR(x+ y).

This shows that R>0 ⊂ A; if R is rigid we are done, otherwise R is a ring and
we show that if x, y ∈ A are such that x−y has finite dimension, then x−y ∈ A.
We may assume that x and y are homogeneous. Let atn, btm and ctr be the
leading terms of λt(x), λt(y), and λt(x − y) respectively; we have a, b ∈ `(R)
and r = dimλ(x − y) > δR(x − y) = m − n. But since λt(y)λt(x − y) = λt(x),
we must actually have r = m − n and ac = b. Since `(R) is saturated in |R|,
c ∈ `(R).

Remark 1.20. A morphism ofM -structured rings preserves the augmentation,
therefore it preserves the dimension of finite-dimensional elements, and also
induces a monoid morphism between line elements.
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1.6 Duality
A lot of λ-rings also come with a notion of duality, such as the K0 of a commu-
tative ring, with the dual of a finite projective module. As far as we know, this
subsection and the next are original material even for ungraded pre-λ-rings.

Definition 1.21. Let R be an M -structured semiring. A duality on R is the
data of:

• an involutive monoid endomorphism ∆M : g 7→ g∗ of M ;

• an involutive ∆M -lax graded λ-endomorphism ∆R : x 7→ x∗ of R;

• a monoid morphism ω : M → `(R);

such that

• for all g ∈M , ω(g∗) = ω(g)∗;

• for all g ∈M , ∂(ω(g)) = g + g∗;

• for all x ∈ `(R), ω(∂(x)) = x · x∗.

The ω(g) are called the dualizing elements of R.

Note that given a duality on R, for any g, h ∈ M , multiplication by ω(h)
gives a canonical isomorphism between Rg and Rg+h+h∗ .

Remark 1.22. WhenM and `(R) are 2-torsion group, then there is a canonical
duality where ∆M and ∆R are the identity, and ω is the trivial morphism. In
that case we say that R is self-dual.

Remark 1.23. If R is an M -structured ring, any duality on R>0 exends
uniquely to a duality on R, and if R>0 is self-dual then so is R.

Example 1.24. It is easy to see that SW (K)± and GW±(K) are self-dual.

Example 1.25. If R is an M -structured semiring with duality, and h 7→ h∗

is any involutive endomorphism N → N (for instance the identity), then R[N ]
has a natural duality extending the one on R, using ∆M×N (g, h) = (g∗, h∗),
∆R[N ](x · h) = x∗ · h∗, and ω(g, h) = ω(g) · (h+ h∗).

1.7 Determinant
We saw in proposition 1.19 that if R isM -structured and x ∈ R has dimension n,
then λn(x) is a line element. This construction can be extended to all elements
when R is a ring (in the rigid case no extension is necessary).

Proposition 1.26. Let R be an M -structured ring. There is a unique group
morphism

det : R→ G(`(R)),

which we call the determinant, such that if dimλ(x) = n ∈ N, then det(x) =
λn(x). If f is a morphism of M -structured rings, then det(f(x)) = f(det(x)).
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Proof. We saw in proposition 1.19 that this was well-defined for finite-dimensional
elements, and in particular for positive elements. If x ∈ R is any element,
we may write x = x1 − x2 where the xi are positive, and we set det(x) =
det(x1) det(x2)−1. This is well-defined since if x = y1 − y2 is another decom-
position, then x1 + y2 = x2 + y1 so det(x1) det(y2) = det(x2) det(y1). The fact
that this defines a group morphism is then clear by definition.

The compatibility with morphisms is easy to see since they preserve the λ-
dimension (see Remark 1.20) and f(λn(x)) = λn(f(x)) if x is of finite dimension
n.

Remark 1.27. Recall that if M is actually a group, then R× is a group, as
well as `(R) (as it is a saturated submonoid), so in that case G(`(R)) = `(R).

Example 1.28. The determinant of an element of GW±(K) is a 1-dimensional
quadratic form, which is basically the same thing as a square class, and it is
easy to check that this square class is indeed the usual determinant of a bilinear
form (defined as the square class of the determinant of its matrix in any basis).
In particular, it is just 〈1〉 for all elements in GW−1(K).

The determinant often interacts with duality:

Definition 1.29. Let R be an M -structured semiring with duality. We say that
R has determinant duality if for any homogeneous positive element x ∈ R of
finite dimension n ∈ N, and any p, q ∈ N such that p+ q = n, we have

ω(q∂(x))λp(x) = det(x)λq(x∗).

Remark 1.30. Obviously, when R is a ring, saying that R or R>0 has deter-
minant duality is the same.

Example 1.31. It is not very hard to see that SW±(K) (and thereforeGW±(K))
has determinant duality. Indeed, for elements of SW−1(K) it is trivial because
they are classified by their dimension, so the formula amounts to

(
n
p

)
=
(
n
q

)
.

For quadratic forms, this may be checked on a diagonalization. Indeed, if
q = 〈a1, . . . , an〉 then λd(q) has a diagonalization given by the aI where I ⊂
{1, . . . , n} has size d, and aI =

∏
i∈I ai, so λ

n(x)〈aI〉 = 〈aI〉 shows the formula
(where I is the complementary of I).

2 Mixed Grothendieck-Witt rings
In this section, we review the definitions and results from [6] about the mixed
Grothendieck-Witt ring which are necessary for our purposes (we refer to [6] for
the proofs and details).

Definition 2.1. Let (A, σ) and (B, τ) be algebras with involution over K. A
hermitian Morita equivalence from (B, τ) to (A, σ) is a B-A-bimodule V en-
dowed with a regular ε-hermitian form h : V × V → A over (A, σ) (with
ε = ±1), such that the action of B on V induces a K-algebra isomorphism
B ' EndA(V ), under which τ is sent to the adjoint involution σh (which means
that h(bu, v) = h(u, τ(b)v)).
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There exists such an equivalence if and only if A andB are Brauer-equivalent;
in this case, the isomorphism class of the bimodule V is unique, and if we fix
such a V , the ε-hermitian form h is unique up to a multiplicative scalar: if h′ is
another choice, there is some λ ∈ K× such that h′ = 〈λ〉h.

Definition 2.2. The hermitian Brauer 2-group Brh(K) of K is the category
whose objects are algebras with involutions over K, and morphisms (B, τ) →
(A, σ) are isomorphism classes of ε-hermitian Morita equivalences from (B, τ)
to (A, σ).

The composition of (U, g) : (C, θ) → (B, τ) and (V, h) : (B, τ) → (A, σ) is
defined as (U ⊗B V, f) with

f(u⊗ v, u′ ⊗ v′) = h(v, g(u, u′)v′).

Note that the identity of (A, σ) in Brh(K) is the diagonal form (A, 〈1〉σ).
It can be shown that all morphisms are invertible. Specifically, if (V, h) is a
morphism from (B, τ) to (A, σ), then we can define an A-B-bimodule V as
being V as a K-vector space, but with twisted action a · v · b = τ(b) · v · σ(a).
Then we have a natural form h on V over (B, τ) defined by h(x, y)z = xh(y, z)
for all x, y, z ∈ V , and the inverse of (V, h) in Brh(K) is (V , 〈ε(h)〉h).

If ε = ±1 then SWε is a functor from Brh(K) to commutative monoids;
this fact is the main reason that SWε is preferred to the more usual SW ε.
The category Brh(K) is monoidal for the usual tensor product of algebras and
(hermitian) modules over K, and SW1 ⊕ SW−1 is a monoidal functor from
Brh(K) to µ2(K)-graded commutative monoids; this means that there is a
natural map

SWε(A, σ)⊗K SWε′(B, τ)→ SWεε′(A⊗K B, σ ⊗ τ)

which is just given by the tensor product of hermitian modules.
For any (A, σ), this means that if Γ′ = N×µ2(K) we can define a Γ′-graded

semiring ŜW (A, σ) by

ŜW (A, σ)(d,ε) = SWε(A
⊗d, σ⊗d)

and that ŜW is a functor from Brh(K) to Γ′-graded semirings. This also define
the associated Grothendieck ring ĜW (A, σ), with

ĜW (A, σ)(d,ε) = GWε(A
⊗d, σ⊗d).

We want to use the fact that algebras with involution have exponent 2 to
reduce the Z-grading to a Z/2Z-grading.

Definition 2.3. Let (A, σ) be an algebra with involution over K. The mixed
Grothendieck-Witt monoid of (A, σ) is the Gamma-graded commutative monoid
S̃W (A, σ), where Γ = Z/2Z× µ2(K), defined by

S̃W (A, σ)(0,ε) = SW ε(K) and S̃W (A, σ)(1,ε) = SWε(A, σ).

The corresponding Grothendieck group G̃W (A, σ) is the mixed Grothendieck-
Witt group of (A, σ).
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Then S̃W is a functor from Brh(K) to the category of Γ-graded commu-
tative monoids, the components SW (K) and SW−1(K) being constant along
this functor. The components SW (K) and SW−1(K) are called even, and the
SWε(A, σ) are odd (this is in agreement with the Z/2Z-grading induced by the
Γ-grading). We also call SW1(A, σ) the orthogonal component, and SW−1(A, σ)

the symplectic one. All of this also applies to G̃W (A, σ).
Sending a module to its reduced dimension defines a monoid morphism from

SWε(A, σ) to N ⊂ Z. They can be bundled together to define a Γ-graded monoid
morphism r̃dim : S̃W (A, σ) → Z[Γ] which we call the graded reduced dimen-
sion. The total reduced dimension rdim : S̃W (A, σ) → Z is the composition
of r̃dim with the canonical morphism Z[Γ] → Z. The same thing can of course
also be done to define a Γ′-graded group morphism r̂dim from ŜW (A, σ) to Z[Γ′].

The following theorem is the key to the semiring structure on S̃W (A, σ).
Let us write |A|σ for the left (A ⊗K A)-module which is A as a vector space,
with "twisted" action

(a⊗ b) · x = axσ(b). (4)

It can then be checked that (|A|σ, Tσ) is a morphism in Brh(K) from (A⊗2, σ⊗2)
to (K, Id).

Theorem 2.4. Let (A, σ) be an algebra with involution over K, and let d, r ∈ N
be integers of the same parity. Then there is a canonical hermitian Morita
equivalence

ϕd,r(A,σ) : (A⊗d, σ⊗d)→ (A⊗r, σ⊗r)

such that:

• ϕd,d(A,σ) is the identity of (A⊗d, σ⊗d);

• ϕ2,0
(A,σ) is (|A|σ, Tσ);

• ϕr1+r2,s
(A,σ) ◦ (ϕd1,r1(A,σ) ⊗ ϕ

d1,r1
(A,σ)) = ϕd1+d2,s

(A,σ) ;

• if f : (B, τ) → (A, σ) is any morphism in Brh(K), then ϕd,r(A,σ) ◦ f
⊗d =

f⊗r ◦ ϕd,r(B,τ).

Remark 2.5. The theorem can be rephrased as saying that there is a canonical
monoidal functor from the discrete monoidal category Z/2Z to Brh(K) sending
1 to (A, σ), and that this contruction is itself functorial in (A, σ).

There is an obvious morphism Γ′ → Γ given by Z→ Z/2Z, and using ϕd,r(A,σ)

with r ∈ {0, 1}, we can define a canonical lax graded monoid morphism

ŜW (A, σ) −→ S̃W (A, σ).

Note that it is by definition the identity on the components SWε(K) and
SWε(A, σ), and in general it is an isomorphism on each homogeneous component
(but it is not a graded isomorphism since Γ′ → Γ is not an isomorphism).
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Theorem 2.6. Let (A, σ) be an algebra with involution over K. The Γ′-graded
semiring ŜW (A, σ) is commutative, and r̂dim is a graded augmentation.

There is a unique Γ-graded semiring structure on S̃W (A, σ) such that the
canonical map ŜW (A, σ)→ S̃W (A, σ) is a semiring morphism. Then S̃W (A, σ)

is a commutative Γ-graded semiring, r̃dim is a graded augmentation, and the
functor S̃W is a functor from Brh(K) to the category of augmented Γ-graded
commutative semirings.

Example 2.7. By definition, in S̃W (A, σ) we have 〈1〉2σ = Tσ ∈ SW (K).

Remark 2.8. The functoriality implies that the graded semiring S̃W (A, σ) only
depends on the Brauer class of A, but noncanonically : if A and B are Brauer-
equivalent, then there exists a Morita equivalence between (A, σ) and (B, τ)
inducing an isomorphism on the mixed Grothendieck-Witt semirings, but there
are several choices of such equivalences, which amount to a choice of scaling,
which only has influence on the odd components.

This contruction is of course compatible with taking Grothendieck groups,
and also with taking the group quotient Wε(A

⊗d, σ⊗d) of GWε(A
⊗d, σ⊗d). All

in all, this defines a natural commutative diagram of lax graded semiring mor-
phisms, which is functorial over Brh(K):

ŜW (A, σ) ĜW (A, σ) Ŵ (A, σ)

S̃W (A, σ) G̃W (A, σ) W̃ (A, σ).

Example 2.9. If (A, σ) = (K, Id), then S̃W (K, Id) is canonically isomorphic to
the group semiring SW±(K)[Z/2Z]. The Γ-grading keeps track of the even/odd
components. Of course, G̃W (K, Id) ' GW±(K)[Z/2Z] also.

Example 2.10. If (Q, γ) is a quaternion algebra over K with its canonical
involution, then for any a, b ∈ K× we have in G̃W (Q, γ):

〈a〉γ · 〈b〉γ = 〈2ab〉nQ (5)

where nQ is the norm form of Q, and for any invertible pure quaternions z1 and
z2:

〈z1〉γ · 〈z2〉γ = 〈−TrdQ(z1z2)〉ϕz1,z2 (6)

where ϕz1,z2 is the unique 2-fold Pfister form whose Clifford invariant e2(ϕz1,z2)
is the Brauer class [Q] + (z2

1 , z
2
2). Note that TrdQ(z1z2) = 0 exactly when z1

and z2 anti-commute, and in that case ϕz1,z2 is hyperbolic; the formula above
should then be understood as saying that 〈z1〉γ · 〈z2〉γ is hyperbolic.

3 λ-operations on hermitian forms

3.1 Alternating powers of a module
The first step is to associate to each A-module V an A⊗d-module Altd(V ), such
that we recover the construction of the exterior power in the split case. The
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natural context of the exterior power construction for vector spaces is that of
Schur functors, but the development of such a theory for modules over central
simple algebras is beyond the scope of this article, and will be addressed in
future work.

It is still useful to view the exterior power construction as a consequence of
the structure of module over a symmetric group. Namely, if V is a K-vector
space, then V ⊗d is naturally a left K[Sd]-module, and Λd(V ) is the quotient
of V ⊗d by the subspace generated by the kernels of 1− τ for all transpositions
τ ∈ Sd. Now if V is a right A-module, it is in particular a K-vector space, so
V ⊗d still has the left K[Sd]-module structure given by the permutation of the d
factors, but it is not the one we want to use, since it is not compatible with the
action of A⊗d on the right (to see how ill-suited this action would be, consider
that if V = A, the A⊗d-module generated by the kernel of any 1− τ is the full
V ⊗d, since it contains 1A ⊗ · · · ⊗ 1A).

Instead, recall from [10, 3.5] that for any central simple algebra B, the
Goldman element gB ∈ (B ⊗K B)× is defined as the pre-image of the reduced
trace map TrdB : B → K ⊂ B under the canonical isomorphism of vector spaces

B ⊗K B
∼−→ B ⊗K Bop

∼−→ EndK(B),

and from [10, 10.1] that sending a transposition (i, i+ 1) ∈ Sd to 1⊗· · ·⊗ gB⊗
· · · ⊗ 1 extends to a group morphism Sd → (B⊗d)×, and thus to a K-algebra
morphism

K[Sd]→ B⊗d.

Now let again V be a (non-zero) right A-module, and let B = EndA(V ).
Then from the canonical algebra morphisms from K[Sd] to B⊗d and A⊗d, we
have a canonical structure of left K[Sd]-module on V ⊗d which commutes with
the action of A⊗d, and a canonical structure of right K[Sd]-module which com-
mutes with the action of B⊗d (in particular, those two actions commute with
one another). Those two actions are by default the ones we have in mind when
we work with V ⊗d. When V = 0, EndA(V ) is not a central simple algebra, but
we of course still have (trivial) actions of K[Sd]. Note that both actions are
compatible with scalar extension, and the one on the left is compatible with
Morita equivalence. The connection with the permutation action is given by:

Proposition 3.1. Let A be a central simple algebra over K, let V be a right
A-module, and set B = EndA(V ). Then for any v1, . . . , vd ∈ V and any π ∈ Sd:

π(v1 ⊗ · · · ⊗ vd)π−1 = vπ−1(1) ⊗ · · · ⊗ vπ−1(d).

If A = K, the action of K[Sd] on V ⊗d on the right is trivial, and its action on
the left is the usual permutation action on the d factors.

Proof. By construction of the K[Sd]-module structures, we can reduce to the
case where d = 2 and π is the transposition, and extending the scalars if neces-
sary we may assume that A and B are split.

In this case we have A ' EndK(U), B ' EndK(W ), and V ' HomK(U,W )
with obvious actions from A and B. It is shown in [10] that the Goldman
element gA in A⊗K A ' EndK(U ⊗K U) is the permutation map (and of course
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likewise for gB). Therefore, if f1, f2 ∈ V and u1, u2 ∈ U :

(gB · f1 ⊗ f2)(u1 ⊗ u2) = gB(f1(u1)⊗ f2(u2))

= f2(u2)⊗ f1(u1)

= (f2 ⊗ f1)(gA(u1 ⊗ u2))

= (f2 ⊗ f1 · gA)(u1 ⊗ u2)

so indeed gB · f1 ⊗ f2 = f2 ⊗ f1 · gA.
The last statement is a direct consequence, taking into account that the

Goldman element of K is 1 ∈ K ⊗K = K.

For any finite set X, we define the anti-symmetrizer element sX ∈ K[SX ]
by:

sX =
∑
π∈SX

(−1)ππ. (7)

In particular, this defines sd ∈ K[Sd].

Lemma 3.2. Let V be a right A-module, where A is a central simple algebra.
Let us identify elements of K[Sd] with the maps they induce on V ⊗d. Then

ker(sd) =
∑
g 6=1

ker(1 + (−1)gg)

and
Im(sd) =

⋂
g

ker(1− (−1)gg).

Moreover, the equalities still hold if we restrict g to a generating set.

Proof. In both cases, the equality can be checked after extending the scalars to
a splitting field, and then by Morita equivalence it can be reduced to A = K,
that is to the case of vector spaces, where it amounts to simple combinatorics
on a basis, which we spell out explicitly.

Choose a basis (ei)16i6r of V . For any x ∈ {1, . . . , r}d, we write ex for the
corresponding basis element of V ⊗d, and for any I ⊂ {1, . . . , r} of size d, we
define eI as eI where I consists of the elements of I in increasing order.

It is easy to see that the kernel of sd is generated by the ex where x has at
least two equal components (in which case it is in the kernel of 1 − g for some
transposition g), and by the ex−(−1)gegx where x has distinct components and
g 6= 1, which is in the image of 1− (−1)gg, so in the kernel of 1− (−1)gg. This
shows that ker(sd) ⊆

∑
g ker(1 + (−1)gg), and the reverse inclusion is obvious

since sd is a multiple of 1 + (−1)gg. Note that if g = g1 · · · gr where the gi are
in some generating set, then

ex − (−1)gegx = (ex + egrx)− (egrx + egr−1grx) + · · · − (−1)g(eg2···grx + egx)

so we can indeed restrict to g being in that generating set.
It is also easy to see that the sdeI form a basis of the image of sd. Let

v =
∑
axex ∈ ker(1−(−1)gg), and let x ∈ {1, . . . , r}d. If x has at least two equal

components then ax = 0 because there is a transposition g such that gx = x so
ax = −ax (and we assumed that the characteristic of K is not 2). And if x has
distinct components, we have x = gI for some subset I, and ax = (−1)gaI . All
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in all, this means that v =
∑
I aIsdeI , so

⋂
g ker(1 − (−1)gg) ⊆ Im(sd). The

reverse inclusion is clear since (1− (−1)gg)sd = 0. For the last statement of the
lemma, note that if we have gv = (−1)gv when g is in some generating set, then
it is true for any g.

Note that the second equality really uses the fact that the characteristic is
not 2, while the first is valid in any characteristic (this is why we added the
condition g 6= 1 in the sum, which is only needed in characteristic 2).

This lemma shows that, given the classical definition of exterior powers, when
V is a vector space (so A = K) we have a canonical identification Altd(V ) '
Λd(V ), with sd(v1⊗ · · · ⊗ vd) corresponding to v1 ∧ · · · ∧ vd. This motivates the
following definition:

Definition 3.3. Let A be a central simple algebra over K, let V be a right
A-module, and let d ∈ N. We set

Altd(V ) = sdV
⊗d ⊂ V ⊗d

as a right A⊗d-module, with in particular Alt0(V ) = K and Alt1(V ) = V .

Proposition 3.4. Let A be a central simple algebra over K, let V be a right
A-module, and let d ∈ N. Then

rdimA⊗d(Altd(V )) =

(
rdimA(V )

d

)
.

In particular, if d > rdimA(V ) then Altd(V ) is the zero module.

Proof. Once again, it is enough to check this when A is split, and then by Morita
equivalence when A = K. But then this is the usual formula for the dimension
of Λd(V ).

Remark 3.5. In [10, §10.A], the algebra λd(A) is defined, using our notation,
as EndA⊗d(Altd(A)), where A is seen as a module over itself. When d 6 deg(A),
λd(A) is a central simple algebra, but when d > deg(A), λd(A) is the zero ring
(we will try to avoid using this notation in that case).

In general, if B = EndA(V ) and d 6 rdim(V ), then EndA⊗d(Altd(V )) is
canonically isomorphic to λd(B).

3.2 The shuffle product
In this section, we give an appropriate generalization of the wedge product on
exterior powers of vector spaces, that is to say an associative product from
Altp(V )⊗K Altq(V ) to Altp+q(V ).

We start by recalling some elementary results about symmetric groups and
shuffles. Let us fix a finite totally ordered set X, and a partition X =

∐
i Ii.

Then recall that in SX we have the Young subgroup S(Ii) and the set of shuffles
Sh(Ii). The usefulness of shuffles is explained by the following lemma:

Lemma 3.6. Any element of SX can be written in a unique way as πσ, with
π ∈ Sh(Ii) and σ ∈ S(Ii).
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Proof. Let τ ∈ SX . For any i, we can write Ii = {ai,1, . . . , ai,di} such that
ai,1 < · · · < ai,di , but also Ii = {bi,1, . . . , bi,di} such that τ(bi,1) < · · · < τ(bi,di).
Then we define a permutation σi of Ii by σi(bi,j) = ai,j , and since we do it for
every i we get a permutation σ ∈ S(Ii).

Let π = τσ−1; by construction π ∈ Sh(Ii) since π(ai,j) = τ(bi,j) so π(ai,1) <
· · · < π(ai,di). The way we defined the σi and π makes it clear that this is the
only possible decomposition.

Shuffles also have a nice compatibility with refinements of partitions:

Lemma 3.7. Suppose that each Ii is itself partitioned as Ii =
∐
j Ji,j. Let

τ ∈ SX , and let τ = πσ be the decomposition given by lemma 3.6, with σ
corresponding to (σi) ∈

∏
iSIi . Then τ is a (Ji,j)i,j-shuffle if and only if each

σi is a (Ji,j)j-shuffle.

Proof. Since π is increasing on each Ii, it is clear that τ is increasing on Ji,j if
and only σi is.

Let us then generalize a little the construction of the anti-symmetrizer of
last section: if A ⊂ SX is any subset, we define

alt(A) =
∑
g∈A

(−1)gg ∈ K[SX ],

so that sX = alt(SX).
We can record some very basic observations on this construction:

• if A,B,C ⊂ SX are such that any element of A can be written uniquely
as a product of an element of B and an element of C, then alt(A) =
alt(B)alt(C);

• if Ai ⊂ SIi for each i, then alt(
∏
iAi) =

⊗
i alt(Ai).

If we now define the shuffle element sh(Ii) ∈ K[SX ] by

sh(Ii) = alt(Sh(Ii)) =
∑

π∈Sh(Ii)

(−1)ππ, (8)

we get the following consequences:

Corollary 3.8. It holds in K[SX ] that

sX = sh(Ii) · (sI1 ⊗ · · · ⊗ sIr )

and if each Ii is further partitioned as Ii =
∐
j Ji,j, that

sh(Ji,j)i,j = sh(Ii) · (sh(J1,j)j ⊗ · · · ⊗ sh(Jr,j)j ).

Proof. The first equality is a corollary of lemma 3.6 using the first observation
above, and the second is a consequence of lemma 3.7 using both observations.

When X = {1, . . . , d} and the partition comes from a decomposition d =
d1 + · · · + dr, we simply write shd1,...,dr ∈ K[Sd] for the corresponding shuffle
element.

This leads to the following definition:
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Definition 3.9. Let A be a central simple algebra over K, and let V be a right
A-module. The shuffle algebra of V is defined as the K-vector space

Sh(V ) =
⊕
d∈N

V ⊗d

(which is the same underlying space as the tensor algebra T (V ) over K) with
the product V ⊗p ⊗K V ⊗q → V ⊗p+q defined by

x#y = shp,q(x⊗ y), (9)

which we call the shuffle product.

The term algebra is fully justified by the following proposition:

Proposition 3.10. Let A be a central simple algebra over K, and let V be a
right A-module. The shuffle algebra Sh(V ) is a Z-graded associative K-algebra
with unit 1 ∈ K = V ⊗0.

Furthermore,

Alt(V ) =

rdim(V )⊕
d=0

Altd(V ) ⊂ Sh(V )

is a subalgebra, and is actually the K-subalgebra generated by V = Alt1(V ).
Precisely, if x ∈ V ⊗p and y ∈ V ⊗q with p+ q = d, we have

(spx)#(sqy) = sd(x⊗ y)

and in particular if x1, . . . , xd ∈ V :

x1# · · ·#xd = sd(x1 ⊗ · · · ⊗ xd).

Proof. For the associativity, we make use of corollary 3.8: if p + q + r = d, we
have

shp,q,r = shp+q,r · (shp,q ⊗ 1) = shp,q+r · (1⊗ shq,r)

which by definition of the shuffle product implies that if x ∈ V ⊗p, y ∈ V ⊗q and
z ∈ V ⊗r, (x#y)#z = x#(y#z). The claims about the grading and the unit are
trivial.

The rest of the statement follows directly from the formula (spx)#(sqy) =
sd(x⊗y), which is a clear consequence of corollary 3.8 since it implies shp,q(sp⊗
sq) = sd.

From what we already observed previously, when A = K the alternating
algebra Alt(V ) is canonically isomorphic to the exterior algebra Λ(V ), and the
shuffle product corresponds to the wedge product.

One of the main properties of the wedge product is its anti-commutativity,
and we do get some version of that property:

Proposition 3.11. Let A be a central simple algebra over K, and let V be a
right A-module. For any d ∈ N, x1, . . . , xd ∈ V and π ∈ Sd, we have

xπ(1)# . . .#xπ(d) = (−1)π(x1# . . .#xd)π.

21



Proof. From proposition 3.1 we see that xπ(1)# . . .#xπ(d) is sdπ−1(x1 ⊗ · · · ⊗
xd)π, so we can conclude using sdg = (−1)gsd for any g ∈ Sd.

We now establish the analogue of the well-known addition formula for exte-
rior powers of vector spaces.

Proposition 3.12. Let A be a central simple algebra over K, and let U and
V be right A-modules. Then for any d ∈ N the shuffle product induces an
isomorphism of A⊗d-modules :⊕

p+q=d

Altp(U)⊗K Altq(V )
∼−→ Altd(U ⊕ V ).

We first need the following lemma, which explains how to handle the action
of the symmetric groups when two different modules are involved:

Lemma 3.13. For any p, q ∈ N with p+ q = d, there are two natural structures
of left K[Sp,q]-module on U⊗p ⊗K V ⊗q: the one induced by the left K[Sp]-
module U⊗p and the left K[Sq]-module V ⊗q; and the restriction of the left
K[Sd]-module structure on (U ⊕ V )⊗d.

Those two structures are actually the same.

Proof. We can reduce by scalar extension to the case where A is split, and by
Morita equivalence to A = K, in which case the result is about the classical
permutation actions, and is therefore clear.

Proof of the Proposition. Lemma 3.13 ensures that we can compute all shuffle
products in Alt(U ⊕ V ) with no worry (Alt(U) and Alt(V ) are subalgebras).

Using proposition 3.10, we easily establish that Altd(U ⊕ V ) is linearly
spanned by the elements of the type x1# · · ·#xd with xi in U or V . Now
using proposition 3.11, we can permute the xi so that x1, . . . , xp ∈ U and
xp+1, . . . , xd ∈ V , at the cost of multiplying on the right by some π ∈ Sd. But
any element of this type is obviously in the image of the map described in the
statement of the proposition, so this map is surjective. We may then conclude
that it is an isomorphism by checking the dimensions over K (using proposition
3.4 for instance).

Note that in particular this defines a natural Z-graded K-linear isomorphism
between Alt(U) ⊗K Alt(V ) and Alt(U ⊗ V ), but it is not quite an algebra
isomorphism.

3.3 Alternating powers of a ε-hermitian form
Now if V is a non-zero A-module equipped with a ε-hermitian form h with
respect to some involution σ on A, we want to endow Altd(V ) with an induced
form Altd(h) such that in the split case we recover the exterior power of the
bilinear form. This requires understanding the interaction between the action
of the symmetric group and the involutions on the algebras.

Recall that any group algebra K[G] has a canonical involution S given by
S : g 7→ g−1, and that if (R, σ) is any ring with involution, its isometry group
Iso(R, σ) is the set of x ∈ R such that xσ(x) = 1 (it is a subgroup of R×). In
particular, G is a subgroup of Iso(K[G], S).
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Proposition 3.14. Let (A, σ) be an algebra with involution over K. Then for
any d ∈ N the canonical K-algebra morphism K[Sd] → A⊗d is a morphism of
involutive algebras

(K[Sd], S)→ (A⊗d, σ⊗d).

Equivalently, the canonical group morphism Sd → A⊗d actually takes values
in the isometry group Iso(A⊗d, σ⊗d).

Proof. The equivalence of the two formulations is clear given the form of the
canonical involution on K[Sd]. We can then reduce to the case of d = 2 and
a transposition, which means we have to prove that the Goldman element is
symmetric for σ2. By definition of gA, this amounts to the fact that if gA =∑
i ai ⊗ bi with ai, bi ∈ A, then for any x ∈ A,

∑
i σ(ai)xσ(bi) = TrdA(x). But

notice that element is σ(
∑
i biσ(x)ai), which is TrdA(σ(x)) = TrdA(x) because∑

i bi ⊗ ai = gA(
∑
i ai ⊗ bi)gA = gA.

Corollary 3.15. Let (A, σ) be an algebra with involution over K, and let (V, h)
be an ε-hermitian module over (A, σ). Then for any d ∈ N, and any x, y ∈ V ⊗d,
and any θ ∈ K[Sd] we have

h⊗d(θ · x, y) = h⊗d(x, S(θ) · y).

In particular, since S(sd) = sd, we get h⊗d(x, sdy) = h⊗d(sdx, y).

Proof. Let B = EndA(V ) and τ = σh, and write θB ∈ B⊗d for the image of θ
by the canonical morphism. Then proposition 3.14 shows that τ⊗d(θB) is the
image of S(θ) in B⊗d, which shows the first formula by definition of the adjoint
involution. The fact that S(sd) = sd is clear since g 7→ g−1 is bijective on Sd

and preserves (−1)g.

This observation allows the following definition:

Definition 3.16. Let (A, σ) be an algebra with involution over K, and let (V, h)
be an ε-hermitian module over (A, σ). We set:

Altd(h) : Altd(V )×Altd(V ) −→ A⊗d

(sdx, sdy) 7−→ h⊗d(sdx, y) = h⊗d(x, sdy).

This is well-defined according to corollary 3.15, since h⊗d(sdx, y) only de-
pends on sdx and not the full x, and conversely h⊗d(x, sdy) only depends on
sdy.

The definition can be rephrased as

Altd(x1# . . .#xd, y1# . . .#yd) = h⊗d(x1# . . .#xd, y1 ⊗ · · · ⊗ yd). (10)

Proposition 3.17. Let (A, σ) be an algebra with involution over K, and let
(V, h) be an ε-hermitian module over (A, σ). The application Altd(h) is an
εd-hermitian form over (A⊗d, σ⊗d).

Proof. We have for all x, y ∈ V ⊗d and all a, b ∈ A⊗d:

Altd(h)(sdx · a, sdy · b) = h⊗d(xa, sdyb)

= σ⊗d(a)h⊗d(x, sdy)b

= σ⊗d(a) Altd(h)(sdx, sdy)b
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and

Altd(h)(sdy, sdx) = h⊗d(y, sdx)

= εdσ⊗d(h⊗d(sdx, y))

= εdσ⊗d(Altd(h)(sdx, sdy)).

Example 3.18. When A = K and h is a bilinear form on the vector space V ,
then if x = u1 ⊗ · · · ⊗ ud and y = v1 ⊗ · · · ⊗ vd, we get

Altd(h)(sdx, sdy) =
∑
π∈Sd

(−1)π
∏
i

h(uπ−1(i), vi) = det(h(ui, vj))

so when we identify Altd(V ) and Λd(V ), Altd(h) does correspond to λd(h).

Proposition 3.19. Let (A, σ) be an algebra with involution over K, and let
(V, h) be an ε-hermitian module over (A, σ). For any d ∈ N, we can restrict the
εd-hermitian form h⊗d to Altd(V ) ⊂ V ⊗d, and we get

h⊗d|Altd(V )
= 〈d!〉Altd(h).

Proof. Since sd is symmetric, we have h⊗d(sdx, sdy) = h⊗d(x, (sd)
2y). But it is

easy to see that s2
d = (d!)sd, which concludes.

Note that this means that we could have simply defined Altd(h) in terms
of the restriction of h⊗d in characteristic 0, but in arbitrary characteristic this
does not work.

We can then show the compatibility of this construction with the sum for-
mula:

Proposition 3.20. Let (A, σ) be an algebra with involution over K, and let
(U, h) and (V, h′) be ε-hermitian modules over (A, σ). The module isomorphism
in proposition 3.12 induces an isometry⊕

p+q=d

Altp(h)⊗K Altq(h′)
∼−→ Altd(h ⊥ h′).

Proof. Let u, u′ ∈ U⊗p and v, v′ ∈ V ⊗q. Then

Altd(h ⊥ h′)((spu)#(sqv), (spu)#(sqv))

= Altd(h ⊥ h′)(sd(u⊗ v), sd(u
′ ⊗ v′))

=(h ⊥ h′)⊗d(sd(u⊗ v), u′ ⊗ v′)

=
∑
π∈Sd

(−1)π(h ⊥ h′)⊗d(π(u⊗ v), u′ ⊗ v′),

where we used proposition 3.10 for the first equality. We want to show that
(h ⊥ h′)⊗d(π(u ⊗ v), u′ ⊗ v′) = 0 if π 6∈ Sp,q. But if u = x1 ⊗ · · · ⊗ xp,
u′ = y1 ⊗ · · · ⊗ yp, and v = xp+1 ⊗ · · · ⊗ xd, v′ = yp+1 ⊗ · · · ⊗ yd, then using
proposition 3.1:

(h ⊥ h′)⊗d(π(u⊗ v), u′ ⊗ v′)
= (h ⊥ h′)⊗d((xπ−1(1) ⊗ · · · ⊗ xπ−1(d))π, (y1 ⊗ · · · ⊗ yd))
= π−1(h ⊥ h′)(xπ−1(1), y1)⊗ · · · ⊗ (h ⊥ h′)(xπ−1(d), yd)
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which is indeed zero if π 6∈ Sp,q since at least one of the (h ⊥ h′)(xπ−1(i), yi)
will be zero. Hence:

Altd(h ⊥ h′)((spu)#(sqv), (spu)#(sqv))

=
∑

π∈Sp,q

(−1)π(h ⊥ h′)⊗d(π(u⊗ v), u′ ⊗ v′)

=
∑
π1∈Sp

∑
π2∈Sq

(−1)π1π2(h ⊥ h′)⊗d(π1u⊗ π2v), u′ ⊗ v′)

= h(spu, u
′)⊗ h′(sqv, v′).

Remark 3.21. If d 6 deg(A), then the hermitian form Altd(〈1〉σ) induces an
adjoint involution σ∧d on λd(A). This is essentially the same definition of σ∧d
as in [10] (and it is indeed the same involution).

In general, if B = EndA(V ) and d 6 rdim(V ), then the adjoint involution of
Altd(h), defined on λd(B), is σ∧dh .

3.4 The pre-λ-ring structures
We want to use the previous constructions and results to get a Γ-structure on
G̃W (A, σ). They first translate to a structure on ĜW (A, σ).

Theorem 3.22. Let (A, σ) be an algebra with involution over K. Then the
operation

Altd : SWε(A
⊗n, σ⊗n)→ {0} ∪ SWεd(A⊗nd, σ⊗nd)

extends uniquely to a Γ′-graded pre-λ-structure on ĜW (A, σ). Also r̂dim is a
graded augmentation, and ŜW (A, σ) is a homogeneous positive structure, mak-
ing ĜW (A, σ) into a Γ′-structured ring.

Furthermore, ĜW is a functor from Brh(K) to the category of Γ′-structured
rings.

Proof. Proposition 3.20 shows that h 7→
∑
d Altd(h)td defines an additive map

from ŜW (A, σ) to ΛΓ′(ĜW (A, σ)), and by universal property of Grothendieck
groups, this extends uniquely to a group morphism on ĜW (A, σ). Since Alt1 is
the identity, this is exactly a graded pre-λ-ring structure.

Since we already know that r̂dim is a graded ring morphism, we need to check
that it is a λ-morphism, which is exactly the content of proposition 3.4. The
fact that ŜW (A, σ) is a homogeneous positive structure is mostly clear; only
condition (v) on line elements in definition ?? is non-trivial. But the elements
of dimension 1 in ŜW (A, σ) are exactly the 1-dimensional quadratic forms in
SW1(A⊗d, σ⊗d) when A⊗d is split, and clearly such elements are quasi-invertible
(for instance because they are invertible up to Morita equivalence), and form a
saturated submonoid of such elements.

It remains to show the functoriality; let f : (B, τ) → (A, σ) be a morphism
in Brh(K). We already know that the induced map f∗ on the ĜW is a graded
ring morphism, which preserves the reduced dimension and ŜW ; it remains to
check that it preserves the λ-operations. So let (V, h) be an ε-hermitian module
over (B⊗n, τ⊗n), and let d ∈ N. What we want to prove is then

f⊗nd∗ (Altd(h)) = Altd(f⊗n∗ (h)).
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Replacing f by f⊗n if necessary, it is enough to treat the case n = 1.
Let (U, g) be the hermitian space over (A, σ) associated to f . Then the

underlying module on the left-hand side is

(sdV
⊗d)⊗B⊗d U⊗d,

and on the right-hand side:
sd(V ⊗B U)⊗d.

There is an obvious bimodule isomorphism between the two, given by

(v1# . . .#vd)⊗ (u1 ⊗ · · · ⊗ ud) 7→ (v1 ⊗ u1)# . . .#(vd ⊗ ud),

and if we look at the definitions of g⊗d ◦Altd(h) and Altd(g ◦h), we see that we
need to prove that for any ui, u′i ∈ U and vi, v′i ∈ V ,

g⊗d(u1 ⊗ · · · ⊗ ud, h⊗d(v1 ⊗ · · · ⊗ vd, v′1# . . .#v′d)(u
′
1 ⊗ · · · ⊗ u′d))

is equal to

(g ◦ h)⊗d((v1 ⊗ u1)⊗ · · · ⊗ (vd ⊗ ud), (v′1 ⊗ u′1)# . . .#(v′d ⊗ u′d)).

It is then a straightforward computation, using proposition 3.1, that both ex-
pressions are equal to

∑
π∈Sd

(−1)π

[⊗
i

g(ui, h(vi, v
′
π−1(i))u

′
π−1(i))

]
π.

Remark 3.23. Note that since ĜW (A, σ) is a graded pre-λ-ring, it is in par-
ticular an ungraded pre-λ-ring, but ŜW (A, σ) is not a positive structure in this
context, because the line elements are not invertible (only quasi-invertible).

Just as for the ring structure, we can then transfer this structure to G̃W (A, σ),
which is the ring we are really interested in.

Corollary 3.24. Let (A, σ) be an algebra with involution over K. There is
a unique Γ-graded pre-λ-ring structure on G̃W (A, σ) such that the canonical
map ĜW (A, σ) → G̃W (A, σ) is a lax graded λ-morphism. For this structure,
r̃dim is a graded augmentation, and S̃W (A, σ) a homogeneous positive structure,
making G̃W (A, σ) a Γ-structured ring.

Furthermore, G̃W is a functor from Brh(K) to the category of Γ-structured
rings.

Proof. All statements are straightforward consequences of the corresponding re-
sults for ĜW (A, σ) stated in theorem ??, taking into account that the canonical
ring morphism ĜW (A, σ)→ G̃W (A, σ) is an additive isomorphism on homoge-
neous components.

If (V, h) is an ε-hermitian module over (A, σ), it image by the operation λd

in G̃W (A, σ) will be denoted

(Λd(V ), λd(h)) ∈ SW εd(A⊗r, σ⊗r),

where r ∈ {0, 1} has the same parity as d.
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Remark 3.25. Note that, unlike (Altd(V ),Altd(h)), which is a well-defined
hermitian module, only the isometry class of (Λd(V ), λd(h)) is well-defined.
This is because although ϕd,r(A,σ) is well-defined as a morphism in Brh(K), the
morphisms in this category are isometry classes of hermitian bimodules. A
particular representative of (Λd(V ), λd(h)) can be singled out by choosing a
specific representative of ϕd,r(A,σ), for instance by choosing a parenthesizing of
the d factors in V ⊗d.

This distinction explains why it is often more convenient to prove things
in ĜW (A, σ) first, where we can work with actual modules, and transfer the
results to G̃W (A, σ) by Morita equivalence.

Also note that the isomorphism class of Λd(V ) as a bimodule only depends
on σ, and not h. Furthermore, if d > rdimA(V ), then Λd(V ) = 0.

Example 3.26. We know from example 2.9 that as a ring G̃W (K, Id) '
GW±[Z/2Z]. We also know from proposition 1.5 that GW±[Z/2Z] has a canon-
ical Γ-graded pre-λ-ring structure, since by example 1.2 GW±(K) is a µ2(K)-
graded pre-λ-ring. Then actually G̃W (K, Id) ' GW±[Z/2Z] as Γ-graded pre-
λ-rings.

Remark 3.27. If f : (B, τ)→ (A, σ) is a morphism in Brh(K), corresponding
to the ε-hermitian form h, then by definition f∗(〈1〉τ ) = h, and since f∗ is
compatible with the λ-operations, we have λd(h) = f∗(λ

d(〈1〉τ )). Thus to be
able to compute the exterior powers of any ε-hermitian form, we just need to
be able to do the computation in the special case of diagonal forms 〈1〉τ for any
involution τ .

Since we are mostly interested in even λ-powers in applications, it can be
useful to give a more explicit description of (a representative of) λ2d(〈1〉σ) for
some (A, σ), which by the preceding remark is enough to describe λ2d(h) for
any h.

For any d ∈ N, and any i ∈ {1, . . . , d}, let us write τi ∈ (Z/2Z)d for the
element with a 1 in the ith position. If (A, σ) is an algebra with involution, let
us also write σi = (1 ⊗ · · · ⊗ σ ⊗ · · · ⊗ 1) with the σ in the ith position also.
Then on the K-vector space A⊗d we get a left action of (Z/2Z)d where τi acts
as ε(σ)σi. Recall that we also have a left and right action of Sd coming from
the Goldman element, so we get a left action of Sd×Sd by x 7→ π1xπ

−1
2 for all

x ∈ A⊗d and π1, π2 ∈ Sd. Combining those two actions defines an action of the
free product (Sd ×Sd) ∗ (Z/2Z)d.

Lemma 3.28. Let (A, σ) be an algebra with involution over K, and let d ∈ N∗.
The action of (Sd×Sd)∗(Z/2Z)d on the K-vector space A⊗d factors through an
action of S2d, through the morphism (Sd ×Sd) ∗ (Z/2Z)d → S2d sending τi to
the transposition (2i− 1, 2i), and identifying Sd ×Sd with the Young subgroup
of S2d corresponding to the partition of {1, . . . , d} into odd and even numbers.

Proof. We may reduce to the split case; in this case, A ' EndK(U) for some
K-vector space U , and σ = σb for some ε-symmetric bilinear form on U . Then
(see [10, §5.A]) we have a natural identification A ' U ⊗K U , such that the
product of A becomes (x1 ⊗ y1) · (x2 ⊗ y2) = b(y1, x2)(x1 ⊗ y2), the reduced
trace of x⊗ y is εb(x, y), and σ(x⊗ y) = ε(y ⊗ x). If (ei) is any basis of U , and
(e∗i ) is its dual basis with respect to b (so b(e∗i , ej) = δi,j), the unit 1A ∈ A is
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∑
i ei ⊗ e∗i , and the Goldman element gA ∈ A ⊗K A is

∑
i,j ei ⊗ e∗j ⊗ ej ⊗ e∗i

(which shows that those expressions actually do not depend on the choice of
basis).

It is then an easy exercise to see that on A⊗K A ' U1⊗K U2⊗K U3⊗K U4,
left multiplication by gA switches U1 and U3, and right multiplication by gA
switches U2 and U4. All in all, this shows that the action of (Sd×Sd)∗(Z/2Z)d

on A⊗d ' U1 ⊗ · · · ⊗ U2d is the permutation action, through the morphism
(Sd ×Sd) ∗ (Z/2Z)d → S2d described in the statement.

Proposition 3.29. Let (A, σ) be an algebra with involution over K, and let
ε = ε(σ) and d ∈ N∗. LetMσ,d be the subspace of A⊗d consisting of the elements
x such that σi(x) = −εx for all 1 6 i 6 d, and let Nσ,d = Altd(A) ∩Mσ,d.
Then using the structure of K[S2d]-module on A⊗d described in lemma 3.28,
Nσ,d = s2dA

⊗d.
A representative of the bilinear space λ2d(〈1〉σ) is given by (Nσ,d, bσ,d), where

bσ,d(s2dx, s2dy) = εdTrdA⊗d(s2dxy).

Furthermore, if the characteristic of K is either 0 or p > 2d, then bσ,d is iso-
metric to the restriction of 〈(2d)!〉T⊗dσ from A⊗d to Nσ,d.

Proof. From theorem 2.4, we see that ϕ2d,0
(A,σ) can be represented by the hermitian

bimodule (|A|⊗dσ , T⊗dσ ), where A⊗2d acts on the left on |A|⊗dσ by regrouping A⊗2d

as (A⊗K A)⊗ · · · ⊗ (A⊗K A) and using the twisted action of A⊗K A on |A|σ
(it is not the only possibility, but it is arguably the most natural).

Then, since the left action of the symmetric group is compatible with Morita
equivalences, (Λ2d(A), λ2d(〈1〉σ)) can be obtained from (|A|⊗dσ , T⊗dσ ) (with the
induced action of K[S2d]) exactly the same way that (Alt2d(A),Alt2d(〈1〉σ))
was obtained from (A⊗2d, 〈1〉⊗2d

σ ).
It turns out that the induced action of K[S2d] on |A|⊗dσ (which as a vector

space is simply A⊗d) is precisely the one described in lemma 3.28.
The fact that Nσ,d = s2dA

⊗d is now a consequence of lemma 3.2, since S2d

is generated by Sd × {1} and the τi, and Altd(A) is (still by lemma 3.2) the
subspace of elements x such that gx = −(−1)gx for all g ∈ Sd × {1}.

This shows that λ2d(〈1〉σ) is indeed given by (Nσ,d, bσ,d) with the formula for
bσ,d given in the statement, using that since σ⊗d(s2dx) = εds2dx, T⊗dσ (s2dx, y)
is εdTrdA⊗d(s2dxy).

The last statement is a direct application of proposition 3.19, since it shows
that in any characteristic the restriction of T⊗dσ to Nσ,d is 〈(2d)!〉bσ,d.

We are particularly interested in the case where 2d = 2:

Corollary 3.30. Let (A, σ) be an algebra with involution over K. Then λ2(〈1〉σ)

is the isometry class of 〈2〉T−ε(σ)
σ .

Proof. We just have to see that Nσ,1 is Sym−ε(σ)(A, σ), so that we can apply
the last statement of proposition 3.29 to d = 1, since T−ε(σ)

σ is precisely the
restriction of Tσ to Sym−ε(σ)(A, σ).

But Alt1(A) = A, and Mσ,1 is Sym−ε(σ)(A, σ) by definition.

Remark 3.31. A more intrinsic description of λ2(〈1〉σ), which would also work
in characteristic 2, and relies on the first description of bσ,1 in proposition 3.29,
corresponds to the form in [10, Exercise 2.15].
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4 Determinants and duality

4.1 The determinant of an involution
In proposition 1.26, we defined a notion of determinant for any G-structured
ring, and in example 1.28 we checked that this coincides with the usual notion
of determinant for bilinear forms when applied to GW±(K) (identifying square
classes and 1-dimensional quadratic forms). If we know look at G̃W (A, σ), this
defines a notion of determinant for ε-hermitian forms, and thus of involutions
(which is more or less the same).

Definition 4.1. Let (A, σ) be an algebra with involution over K. The determi-
nant of (A, σ) (also referred to as the determinant of σ) is

det(A, σ) = det(σ) = det(〈1〉σ) ∈ G̃W (A, σ).

By Morita functoriality, this means that in general det(h) = det(σh). Now
there is already in the literature a notion of determinant of orthogonal involution
on algebras of even degree, see for instance [10, 7.2]. In that case those notions
coincide: since the scalar extension to a generic splitting field is injective on the
group of square classes, this can be checked when A is split, where it is clear
since both definitions generalize the determinant of a quadratic form.

For symplectic involutions (necessarily in even degree), this splitting trick
also shows that the determinant is always 〈1〉, so there is no meaningful notion
of determinant of a symplectic involution, as is well-known.

From those two cases, we can see in particular that if σ is symplectic, then
for any invertible a ∈ Symε(A, σ), det(〈a〉σ) = 〈NrdA(a)〉. (If σ is not assumed
to be symplectic, we rather get det(〈a〉σ) = 〈det(σ)NrdA(a)〉.)

Now when deg(A) is odd, something a little different is happening: there is
no classical notion of determinant of the involution in that case. This is because,
since A must be split and σ orthogonal, σ is adjoint to some symmetric bilinear
form b which is only well-defined up to a scalar, and since det(〈λ〉b) = 〈λ〉det(b)
because the dimension is odd, you cannot attach a square class to that situation.
The definition we gave circumvents this issue by defining det(σ) as a line element
of GW (A, σ). The line elements in GW (K) correspond canonically to square
classes, but the line elements in GW (A, σ) only correspond to square classes
up to a choice of Morita equivalence, which exactly compensates the classical
obstruction.

This is obviously not a very deep improvement on the previous definitions,
but it does offer a natural and uniform definition which covers all cases.

4.2 Determinant duality

We now show that ĜW (A, σ) and G̃W (A, σ) have a good theory of duality, and
in particular satisfy the determinant duality property. We already noted that it
was the case for GW±(K) in example ??, but we provided a quick ad how proof
using diagonalization. If we want to deduce the general case from the split case,
we need to define a canonical map which is the candidate for the isometry. This
is why it is convenient to first show the result for ĜW (A, σ).

First, we establish duality structures for ĜW (A, σ) and G̃W (A, σ).
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Proposition 4.2.

There in a classical duality, for vector bundles or quadratic forms, involving
the determinant: namely, if some element x has dimension n then

λn(x)λd(x) = λn−d(x)

for 0 6 d 6 n. For quadratic forms, this is easily checked on a diagonalization.
Indeed, if q = 〈a1, . . . , an〉 then λd(q) has a diagonalization given by the aI
where I ⊂ {1, . . . , n} has size d, and aI =

∏
i∈I ai, so λ

n(x)〈aI〉 = 〈aI〉 shows the
formula (where I is the complementary of I). For anti-symmetric bilinear forms,
it is even more trivial, since they are characterized by their dimension, so the
formula amounts to just

(
n
d

)
=
(
n
n−d
)
. We wish to show that a similar property

holds in G̃W (A, σ), and we first write general definitions for this property.
For any commutative ring R and any polynomial P ∈ R[t], let us write

P = tnP (1/t) where n = deg(P ); in other words, P is the mirror-reversed
polynomial of P . Let SR be the multiplicative submonoid of R[t] consisting of
the polynomials with invertible leading and constant coefficients. Then P 7→ P
is an involutive endomorphism of this monoid.

Definition 4.3. Let R be a G-structured ring. A duality on R is an involutive
ring endomorphism x 7→ x∗ of R such that:

• if x ∈ Rg, then x∗ ∈ R−g;

• λd(x∗) = λd(x)∗

for any homogeneous positive element x ∈ R, we have

det(x)λt(x) = λt(x) ∈ R[t].

In the classical setting of vector spaces and bilinear forms, the determinant
induces a well-known duality: if V is a vector space of dimension n = p+ q, the
natural pairing

Λp(V )⊗K Λq(V ) −→ Λn(V )

defines a canonical isomorphism

Λp(V ) ' HomK(Λq(V ),Λn(V )) ' Λn(V )⊗K Λq(V )∗. (11)

Of course since Λn(V ) has dimension 1, this means that Λp(V ) ≈ Λq(V )∗ non-
canonically, but this is a coincidence, and is not true when we try to generalize
to projective modules, or vector bundles.

Now if V is equipped with a non-degenerate ε-symmetric bilinear form b,
then using the identification V ' V ∗ provided by b, the above isomorphism
gives a natural isometry

(Λp(V ), λp(b)) ' (Λn(V ), λn(b))⊗K (Λq(V ), λq(b)),

where of course (Λn(V ), λn(b)) is the determinant of (V, b), and in particular
there is an equality λp(b) = det(b)λq(b) in GW±(K).

The goal of this section is to generalize this observation to general ε-hermitian
forms.
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Theorem 4.4. Let (A, σ) be an algebra with involution over K, let (V, h) be an
ε-hermitian module over (A, σ) of reduced dimension n, and let p, q ∈ N such
that p+ q = n. Then there is a canonical isometry

(Λp(V ), λp(h))
∼−→ det(V, h) · (Λq(V ), λq(h)).

This is an isometry of either quadratic spaces (when p is even) or of ε-
hermitian forms over (A, σ) (when p is odd). Note that when n and q are odd,
there is a slight ambiguity as to what det(V, h) · (Λq(V ), λq(h)) means; in that
case, it is the quadratic space obtained by canonical Morita equivalence from
the hermitian module det(V, h) ⊗ (Λq(V ), λq(h)) over (A⊗2, σ⊗2). This being
said, when n is odd A is split, so this does not give a lot more than the classical
duality. When either n or q is even, the notation simply designates the tensor
product. Obviously, this implies:

Corollary 4.5. In the conditions of theorem 4.4, we have the following equality
in G̃W (A, σ):

λp(h) = det(h) · λq(h).

Similar to the split case discussed above, we can first establish a general
duality that does not depend on the presence of any involution or hermitian
form, and then specialize it to this case. We first discuss various related notions
of dual for our modules.

Let A and B be central simple algebras overK, and let V be a B-A-bimodule
such that B ' EndA(V ) (so V establishes a Morita equivalence between B and
A). Then we can consider three A-B-bimodules that we might want to call “the
dual” of V ; it turns out they are all canonically isomorphic:

Lemma 4.6. Consider the three A-B-bimodules HomA(V,A), HomB(V,B) and
HomK(V,K), where the actions of A and B on each space are induced by the
actions on V . Then there is a canonical commuting triangle of bimodule iso-
morphisms

HomA(V,A) HomB(V,B)

HomK(V,K)

where the correspondences between fA ∈ HomA(V,A), fB ∈ HomB(V,B) and
fK ∈ HomK(V,K) are given by

fB(v)w = vfA(w), (12)

and
fK(v) = TrdA(fA(v)) = TrdB(fB(v)). (13)

Proof. It is an easy verification that the maps are well-defined and are bimodule
morphisms. To see that they are bijective it suffices to check that they are
injective, since the K-dimensions are the same. It is immediate that fA = 0 if
and only if fB = 0, and if TrdA(fA(v)) = 0 for all v ∈ V , then for any a ∈ A:

TrdA(fA(v)a) = TrdA(fA(va)) = 0,
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so fA(v) = 0 since the trace form is non-degenerate (the reasoning is of course
the same for fB).

It remains to show that the triangle commutes, that is we need to prove
that TrdA(fA(v)) = TrdB(fB(v)) for all v ∈ V . It is enough to check this in the
split case; then A ' EndK(U) ' U ⊗K U∗, B ' EndK(W ) ' W ⊗K W ∗, and
V 'W ⊗K U∗. The reduced trace of A is given by (u⊗ϕ 7→ ϕ(u)), and likewise
for B. We have an identification V ∗ ' U ⊗K W ∗, such that if fA corresponds
to u⊗ϕ, then for x = w⊗ψ ∈ V , fA(x) = ψ(u)w⊗ϕ and fB(x) = ϕ(w)u⊗ψ.
In the end:

TrdB(fB(x)) = ψ(u)ϕ(w) = TrdA(fA(x)).

We then use V ∗ to refer indifferently to any of these bimodules. This also
naturally defines a Bop-Aop-bimodule, which we denote by V −1. The determi-
nant duality for vector spaces uses a canonical correspondence between maps
U ⊗ V → W and maps U → W ⊗ V ∗. We now give more general statements,
which are valid over non-commutative rings and are compatible with Morita
equivalences:

Proposition 4.7. Let R be a commutative ring, and let A and B be R-algebras.
Let U , V and W be right modules over respectively A, B and A⊗RB. We endow
B with its standard structure of right (B⊗K Bop)-module. There is a canonical
bijective correspondence between morphisms of A⊗K B-modules

U ⊗R V −→W

and morphisms of (A⊗R B ⊗R Bop)-modules

U ⊗K B −→ HomR(V,W ).

Furthermore, given Morita equivalences over R between A and B and some
R-algebras D and E respectively, if U ′, V ′ andW ′ are the modules corresponding
to U , V and W respectively, then the equivalences induce a commutative square
of R-linear isomorphisms

HomA⊗RB(U ⊗R V,W ) HomA⊗RB⊗RBop(U ⊗R B,HomR(V,W ))

HomD⊗RE(U ′ ⊗R V ′,W ′) HomD⊗RE⊗REop(U ′ ⊗R E,HomR(V ′,W ′)).

Proof. For the first part of the statement, to each f ∈ HomA⊗RB(U ⊗R V,W )
we associate g : U ⊗R B → HomR(V,W ) defined by

u⊗ b 7→ (v 7→ f(u⊗ vb)),

and conversely to each such g we associate

u⊗ v 7→ g(u⊗ 1)(v).

It is straightforward to check that these associations are well-defined, R-linear,
and inverse of each other.

Now say the equivalence between A and D (resp. B and E) is given by
the A-D-bimodule M (resp. the B-E-bimodule N). Let us start with f ∈
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HomA⊗RB(U ⊗R V,W ). It induces f ′ : U ′ ⊗R V ′ → W ′ by tensoring on both
sides by M ⊗R N over A ⊗R B, given that by construction U ′ = U ⊗A M ,
V ′ = V ⊗B N , and W ′ = W ⊗A⊗B (M ⊗R N).

Let g : U ⊗R B → HomR(V,W ) be the morphism associated to f , and
g′ : U ′ ⊗R E → HomR(V ′,W ′) the morphism induced by Morita equivalence.
We need to check that g′ is the morphism associated to f ′ by the method above,
which results from a long but straightforward verification.

Corollary 4.8. Now let again R = K, and A, B, D and E be central simple
algebras over K. Then the statements of proposition 4.7 hold when replacing
HomR(V,W ) (resp. HomR(V ′,W ′)) with W ⊗K V −1 (resp. W ′ ⊗K (V ′)−1).
That is, we get a commutative square of K-linear isomorphisms

HomA⊗KB(U ⊗K V,W ) HomA⊗KB⊗KBop(U ⊗R B,W ⊗K V −1)

HomD⊗KE(U ′ ⊗K V ′,W ′) HomD⊗KE⊗KEop(U ′ ⊗K E,W ′ ⊗K (V ′)−1).

Proof. This follows from the fact thatW ⊗K V −1 is isomorphic to HomK(V,W )
as a (A ⊗K B ⊗K Bop)-module, where A ⊗K B acts on HomK(V,W ) through
W , and Bop acts through V . Indeed, HomK(V,W ) ' W ⊗K HomK(V,K) as
vector spaces, and it is easy to check that the module structures correspond.

We also need to verify that this isomorphism is compatible with the Morita
equivalences, which is just a straightforward unfolding of the definitions.

We can now state our first version of the determinant duality:

Proposition 4.9. Let A be a central simple algebra over K, let V be a right
A-module of reduced dimension n, and let p, q ∈ N such that p + q = n. If we
consider A⊗q as a right (A⊗q ⊗K (A⊗q)op)-module in the standard way, there is
a canonical isomorphism of right (A⊗n ⊗K (A⊗q)op)-modules

Altp(V )⊗K A⊗q
∼−→ Altn(V )⊗K Altq(V )−1.

Furthermore, this isomorphism is compatible with Morita equivalences.

Proof. If we apply the correspondance of corollary 4.8 to the shuffle map

Altp(V )⊗K Altq(V ) −→ Altn(V ),

we get our canonical morphism of (A⊗n ⊗K (A⊗q)op)-modules

Altp(V )⊗K A⊗q −→ Altn(V )⊗K Altq(V )−1.

The compatibility with Morita equivalences follows from the corresponding
statement in corollary 4.8, and the fact that the Altp construction is also com-
patible with Morita equivalences, which we show in the proof of theorem ??.

To prove that this is an isomorphism, it is enough to check it after extending
the scalars to a splitting field of A and B. But since it is compatible with Morita
equivalence, we can actually reduce to the case A = B = K, in which case it is
simply the classical isomorphism Λp(V )

∼−→ Λn(V )⊗K (Λq(V ))∗.
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Remark 4.10. The module isomorphism Φp,q(V ) induces an isomorphism be-
tween the endomorphism algebras of either side: this gives a canonical isomor-
phism λp(A) ' λq(A)op. This is the isomorphism alluded to in [10, exercise
II.12]. In particular, when n = 2m, this defines an isomorphism λm(A) '
λm(A)op which corresponds to the so-called canonical involution on λm(A) (see
[10, §10.B]).

If there is an involution σ on A, then the isomorphism of proposition 4.9 can
naturally be turned into a an isomorphism of A⊗n+q-modules, by twisting the
action of (A⊗q)op through σ⊗q. To limit the confusion regarding the various
"natural" actions, let us write Mq(A, σ) for A⊗q seen as an A⊗2q-module (on
the right) this way, meaning that if x ∈ Mq(A, σ) and a, b ∈ A⊗q, x · (a⊗ b) =
σ⊗q(a)xb. Thus after this twisting, on the left-hand side of the isomorphism we
get Altp(V )⊗K Mq(A, σ).

If in addition V carries an ε-hermitian form h, then using the canonical
map Âltq(h) : Altq(V )−1 → Altq(V ), the right-hand side becomes Altn(V )⊗K
Altq(V ), so that from the proposition we obtain a natural isomorphism of
A⊗n+q-modules

Altp(V )⊗K Mq(A, σ)
∼−→ Altn(V )⊗K Altq(V ). (14)

Note that Mq(A, σ) carries a natural hermitian form over (A⊗2q, σ⊗2q),
which we will write ωq : Mq(A, σ)×Mq(A, σ)→ A⊗2q, given by

ωq(x, y) = (x⊗ 1) · gA⊗q · (1⊗ y)

where gA⊗q is the "twisted goldman element" (Id⊗σ⊗q)(gA⊗q ) ∈ A⊗2q.

Lemma 4.11. The application ωq is indeed a hermitian form on Mq(A, σ), and
defines the inverse hermitian Morita equivalence to ϕ2q,0

(A,σ) described in theorem
2.4.

Proof. From theorem 2.4 and the description of ϕ2,0
(A,σ) which follows it, ϕ2q,0

(A,σ)

is given by the bilinear form (x, y) 7→ TrdA⊗q (σ⊗q(x)y) on A⊗q, which is given
the twisted A⊗2q-action on the left.

From the explicit description of the inverse of a hermitian Morita equivalence
(see from instance [9]), we need to check that if x, y, z ∈ A⊗q, then

ωq(x, y) · z = xTrdA⊗q (σ⊗q(y)z).

This then follows from the definition of ωq and the fact that, by the definition
of the Goldman element, gA⊗q · x = TrdA⊗q (x) for any x ∈ A⊗q.

This gives the hermitian version of the determinant duality:

Proposition 4.12. Let (A, σ) be an algebra with involution over K, let (V, h)
be a ε-hermitian module over (A, σ) of reduced dimension n, and let p, q ∈ N
such that p+ q = n. Then the A⊗n+q-module isomorphism (14) is an isometry

Altp(h)⊗ ωq
∼−→ Altn(h)⊗Altq(h),

which is compatible with hermitian Morita equivalences.
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Proof. The fact that the map is compatible with hermitian Morita equivalences
follows from the construction and the corresponding statement in proposition
4.9. Only the fact that ωq is well-behaved with respect to hermitian Morita
equivalences may pose a difficulty, but it follows either from a direct computation
from its definition, or from its caracterisation in lemma 4.11, given that the
ϕ2q,0

(A,σ) are themselves compatible with hermitian Morita equivalences, as stated
in 2.4.

We now only have to check that the map is an isometry; this can be done
after extending the scalars to a splitting field, so we may assume that A is split.
The compatibility with hermitian Morita equivalences then reduces to the case
where (A, σ) = (K, Id). In that case, we are left with the classical isometry
λp(b) ' λn(b)⊗ λq(b) where b is a bilinear form.

The theorem 4.4 is now an easy consequence:

Proof of Theorem 4.4. The isometry in 4.12 is compatible with hermitian Morita
equivalences, and the statement in the theorem is exactly obtained from the
one in the proposition by applying the canonical hermitian Morita equivalence
ϕn+q,i

(A,σ) (where i is the remainder mod 2 of n+ q). Indeed, this follows from the
definition of the λd(h), and from lemma 4.11 for the disappearance of ωq.
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